a2 United States Patent

US009305132B1

(10) Patent No.: US 9,305,132 B1

Torunoglu 45) Date of Patent: *Apr. 5, 2016
(54) APPROXIMATE CALCULATION OF 2D (51) Imnt.ClL
MATRIX ENTRIES VIA GPU GO6F 17/10 (2006.01)
GOG6F 17/50 (2006.01)
(71) Applicant: D28, Inc., San Jose, CA (US) GO6F 17/16 (2006.01)
(52) US.CL
(72) Inventor: Ilhami H. Torunoglu, Monte Sereno, CPC ... GO6F 17/5081 (2013.01); GO6F 17/16
CA (US) (2013.01)
(58) Field of Classification Search
(73) Assignee: D28, Inc., San Jose, CA (US) None
)) o) See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this .
patent is extended or adjusted under 35 (56) References Cited
U-S.C. 154(b) by 353 days. U.S. PATENT DOCUMENTS
Thl.S patent is subject to a terminal dis- 5757.954 A 5/1998 Kuan et al.
claimer. 6,513,054 Bl 1/2003 Carroll
7,545,984 Bl 6/2009 Kiel et al.
(21) Appl. No.: 13/933,899 2004/0207642 Al 10/2004 Crisu ot al.
Primary Examiner — Michael D Yaary
iled: ul. 2, ttorney, Agent, or Firm — The Mueller Law ce,
(22) Filed Jul. 2, 2013 74) A 4 F The Mueller Law Offi
P.C.
Related U.S. Application Data (5.7). . ABSTRACT . . .
o o Minimizing memory access by converting a given matrix
(63) Continuation of application No. 11/875,650, filed on computation into a set of low-order polynomials. The set of
Oct. 19, 2007, now Pat. No. 8,478,808. polynomials is processed using parallel computational hard-
(60) Provisional application No. 60/862,362, filed on Oct. ware such as graphical processing units.

20, 2006.

5 Claims, 3 Drawing Sheets

Decomposition of 2D LUT
into 1D Orthogonal Tables

Representation of 1D
Functions as Polynomials

4

Computational Efficiency
Through Mixing Polynomial
Representation and Control

Structures

U.S. Patent Apr. 5, 2016 Sheet 1 of 3 US 9,305,132 B1

309
,/ 1 e 300
Geometric L
3 " b — 301
Operation : e o o -
310 |
\ B Y L4 ; v
f . e 302
Rectanglg i Triangle Setup] "
Fragmentation : |
' 0
Shader Instruction Dispatch je-—§ 303
| 311 ’
e Y
Intensity | | g
Calculation < 304
312 i« 305
‘,\ ; i
- , ‘ Y
4 v |
Area |). | '
Search
e & e - 306
X i :
R 2 N . |
{ Memory i | Memory | | Memory | | Memory i, .} """ 307
Partition Partition Partitio Partition
313
NN
EPE .}, Video -
Calculation Processor e T, 308

Figure 1

U.S. Patent Apr. 5, 2016 Sheet 2 of 3 US 9,305,132 B1

STeE sl 401 {Server)

ey ,/
15 T e

»

404 (Output Devices)
403 {(Input Devices) /

!

A / 408 /"’
402 (Display) ’

405 (Bus)

413 > os

414 —» Data Structures

415--» Instructions

41¢ = Applications

417 Procedures : :
406 (CPU(s}) 407 {GPU(s)) 5413‘
{Comm Interface)
412
(Memory}

Figure 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 3 US 9,305,132 B1

Decompoaosition of 2D LUT
into 1D Orthogonal Tables

Representation of 1D
Functions as Polynomials

Y

Computational Efficiency
Through Mixing Polynomial
Representation and Control

Structures

Figure 3

US 9,305,132 Bl

1
APPROXIMATE CALCULATION OF 2D
MATRIX ENTRIES VIA GPU

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a continuation of U.S. patent
application Ser. No. 11/875,650, filed Oct. 19,2007, issued as
U.S. Pat. No. 8,478,808 on Jul. 2, 2013, which claims the
benefit of U.S. provisional patent application 60/862,362,
filed Oct. 20, 2006, which are incorporated by reference along
with all other references cited in this application.

BACKGROUND OF THE INVENTION

This invention relates to the field of scientific computation
and in particular, to techniques of using parallel computa-
tional hardware such as graphical processing units in scien-
tific computation.

In scientific computations, such as physics and image pro-
cessing, two-dimensional (2D) matrix representations are
commonly implemented as lookup tables (LUTs). The main
motivation with such approach is to be able to calculate a
finite set of values beforehand and store in the memory to
avoid real-time computations.

With the above approach, the computational burden is
replaced with increased communication with the memory. In
the cases where these tables cannot fit into fast-speed memo-
ries such as L1 cache, the frequent access to these tables
significantly slow down the computational speed.

Therefore an improved approach is needed.

BRIEF SUMMARY OF THE INVENTION

The invention is a technique of minimizing memory access
by converting a given matrix computation into a set of low-
order polynomials. The set of polynomials is processed using
parallel computational hardware such as graphical processing
units.

In an embodiment, the invention is a methodology to mini-
mize the memory access by converting a given matrix com-
putation into a set of low-order polynomials in parallel com-
putational hardware including graphical processing units.

In an embodiment, the invention is a methodology to mini-
mize the memory access by converting a given matrix com-
putation into a set of low-order polynomials in lithography
and signal processing related computations in parallel com-
putation hardware such as graphical processing units.

In an embodiment, the invention is an iterative set of rules
to reduce the given computations into the desired polynomial
order for computational efficiency dictated by the computa-
tional hardware.

In an embodiment, the invention is a methodology to break
down a matrix-based computation into a set of polynomials.

In an embodiment, the invention is a methodology to deter-
mine the requisite order of polynomials to achieve a given
accuracy target.

In an embodiment, the invention is the convolution calcu-
lations required by lithography applications implemented in
parallel computational hardware such as graphical processing
units. The initial computational requirement may be split into
two polynomials. The initial computational requirement may
be split further into, for example, ten subpolynomials to opti-
mize the memory access.

Other objects, features, and advantages of the present
invention will become apparent upon consideration of the

10

15

20

25

30

35

40

45

50

55

60

65

2

following detailed description and the accompanying draw-
ings, in which like reference designations represent like fea-
tures throughout the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a schematic representation of a typical implemen-
tation for some OPC procedures on a typical commercial
GPU.

FIG. 2 depicts an illustrative computer system pertaining to
various embodiments of the present invention.

FIG. 3 shows a flow of the steps of converting a two-
dimensional matrix memory lookup into computations in
GPUs.

DETAILED DESCRIPTION OF THE INVENTION

U.S. patent application Ser. No. 11/566,140, filed Dec. 1,
2006; Ser. No. 11/566,146, filed Dec. 1, 2006; Ser. No.
11/864,296, filed Sep. 28, 2007; Ser. No. 11/864,343, filed
Sep. 28, 2007; Ser. No. 11/864,381, filed Sep. 28, 2007; and
Ser. No. 11/864,419, filed Sep. 28, 2007 are incorporated by
reference.

FIG. 1 is a schematic representation of typical procedures
for performing a typical OPC method on commercial GPU.
The specific case illustrated uses an Nvidia GeForce® GPU
processor, but the present invention may generally apply to
any commercial GPU or similar device.

Various operations of an OPC flow are executed using a
graphics processor 300. Some steps of an OPC flow include a
geometric operation 309, rectangle fragmentation 310, inten-
sity calculation 311, area search 312, and placement error or
edge placement error (EPE) calculation 313. Geometric
operations are. Rectangle fragmentation operations are.
Intensity calculations are. Area search are. Placement error or
EPE calculations are.

The graphics processor may be a single integrated circuit or
multiple integrated circuits. For example, all the GPU com-
ponents shown in the figure (e.g., blocks 301, 302, 303, 304,
305, 306, 307, and 308) may reside on a single integrated
circuit. Or any combination of components may reside on one
integrated circuit and other components reside on one or more
other integrated circuits. Also a single integrated circuit may
include one or more graphics processor cores.

In a graphics processor 300, there are one or more vertex
processors 301, which are connected to a triangle setup block
302. A vertex processor is responsible for running the vertex
shaders. The input for a vertex shader is the vertex data,
namely its position, color, normals, an so forth. In a vertex
shader, one can write code for tasks such as: vertex position
transformation using the model view and projection matrices;
normal transformation, and if required its normalization; tex-
ture coordinate generation and transformation; lighting per
vertex or computing values for lighting per pixel; and color
computation.

The triangle set up block does. The triangle set-up block is
connected to a shader instruction dispatch 303. The shader
instruction dispatch does. The shader instruction dispatch is
connected to one or more fragment processors 304.

The fragment processor is where the fragment shaders run.
This unit is responsible for operations like: computing colors,
and texture coordinates per pixel; texture application; fog
computation; and computing normals if one wants lighting
per pixel. The inputs for a fragment processor this unit are
typically the interpolated values computed in the previous
stage of the pipeline such as vertex positions, colors, normals,
and so forth.

US 9,305,132 Bl

3

The fragment processor is connected to a fragment cross-
bar 305. The fragment crossbar does. The fragment crossbar
is connected to a stencil buffer 306. The stencil does. The
stencil is connected to one or more memory partitions 307.

The graphics processor may have one or more video pro-
cessors 308. The video processor does. The video processoris
connected to. Any combination of the components shown in
graphics processor 300 may included one integrated circuit.
For example, a graphics processing unit integrated circuit
may include a vertex processor unit and a fragment processor
unit. The graphics processing unit integrated circuit may
include a vertex shader unit and a stencil buffer unit.

Geometric operations may be performed in the CPU (out-
side the GPU), vertex processor, or fragment processor. Frag-
mentation operations may be performed in the CPU, vertex
processor, or fragment processor. Intensity calculations may
be performed in the fragment processor. Area search may be
performed in the fragment processor or stencil. EPE calcula-
tions may be performed in the fragment processor or video
processor. In OPC procedure, any combination of these
operations may be performed with each other.

FIG. 2 depicts anillustrative computer system pertaining to
various embodiments of the present invention. In some
embodiments, the computer system includes a server 401,
display 402, one or more input interfaces 403, and one or
more output interfaces 404, all conventionally coupled by one
or more buses 405. Examples of suitable buses include PCI-
Express®, AGP, PCI, ISA, and the like.

The computer system may include any number of graphics
processors. The graphics processor may reside on the moth-
erboard such as being integrated with the motherboard
chipset. One or more graphics processors may reside on exter-
nal boards connected to the system through a bus such as an
ISA bus, PCI bus, AGP port, PCI Express, or other system
buses. Graphics processors may on separate boards, each
connected to a bus such as the PCI Express bus to each other
and to the rest of the system. Further, there may be a separate
bus or connection (e.g., Nvidia SLI or ATI CrossFire connec-
tion) by which the graphics processors may communicate
with each other. This separate bus or connection may be used
in addition to or in substitution for system bus.

The server 401 includes one or more CPUs 406, one or
more GPUs 407, and one or more memory modules 412. Each
CPU and GPU may be a single core or multiple core unit.
Examples of suitable CPUs include Intel Pentium®, Intel
Core™ 2 Duo, AMD Athlon 64, AMD Opteron®, and the
like. Examples of suitable GPUs include Nvidia GeForce®,
ATT Radeon®, and the like. The input interfaces 403 may
include a keyboard 408 and a mouse 409. The output interface
404 may include a printer 410.

The communications interface 411 is a network interface
that allows the computer system to communicate via a wire-
less or hardwired network. The communications interface
411, may be coupled to a transmission medium (not shown),
such as a network transmission line, for example, twisted pair,
coaxial cable, fiber optic cable, and the like. In another
embodiment, the communications interface 411, provides a
wireless interface, that is, the communication interface 411
uses a wireless transmission medium. Examples of other
devices that may be used to access the computer system via
communications interface 411 include cell phones, PDAs,
personal computers, and the like (not shown).

The memory modules 412 generally include different
modalities, illustratively semiconductor memory, such as
random access memory (RAM), and disk drives as well as
others. In various embodiments, the memory modules 412,

10

15

20

25

30

35

40

45

50

55

60

65

4

store an operating system 413, data structures 414, instruc-
tions 415, applications 416, and procedures 417.

Storage devices may include mass disk drives, floppy
disks, magnetic disks, optical disks, magneto-optical disks,
fixed disks, hard disks, CD-ROMSs, recordable CDs, DVDs,
recordable DVDs (e.g., DVD-R, DVD+R, DVD-RW, DVD+
RW, HD-DVD, or Blu-ray Disc), flash and other nonvolatile
solid-state storage (e.g., USB flash drive), battery-backed-up
volatile memory, tape storage, reader, and other similar
media, and combinations of these.

Invarious embodiments, the specific software instructions,
data structures, and data that implement various embodi-
ments of the present invention are typically incorporated in
the server, 401. Generally, an embodiment of the present
invention is tangibly embodied using a computer readable
medium, for example, the memory, and includes of instruc-
tions, applications, and procedures which, when executed by
the processor, causes the computer system to utilize the
present invention, for example, the collection and analysis of
data, pixelating structures, determining edge placement
errors, moving edge fragments, optimizing edge fragment
placements, and the like. The memory may store the software
instructions, data structures, and data for any of the operating
system, the data collection application, the data aggregation
application, the data analysis procedures, and the like in semi-
conductor memory, in disk memory, or a combination of
these.

A computer-implemented or computer-executable version
of the invention may be embodied using, stored on, or asso-
ciated with computer-readable medium. A computer-read-
able medium may include any medium that participates in
providing instructions to one or more processors for execu-
tion. Such a medium may take many forms including, but not
limited to, nonvolatile, volatile, and transmission media.
Nonvolatile media includes, for example, flash memory, or
optical or magnetic disks. Volatile media includes static or
dynamic memory, such as cache memory or RAM. Transmis-
sion media includes coaxial cables, copper wire, fiber optic
lines, and wires arranged in a bus. Transmission media can
also take the form of electromagnetic, radio frequency, acous-
tic, or light waves, such as those generated during radio wave
and infrared data communications.

For example, a binary, machine-executable version, of the
software of the present invention may be stored or reside in
RAM or cache memory, or on a mass storage device. The
source code of the software of the present invention may also
be stored or reside on mass storage device (e.g., hard disk,
magnetic disk, tape, or CD-ROM). As a further example, code
of'the invention may be transmitted via wires, radio waves, or
through a network such as the Internet.

The operating system may be implemented by any conven-
tional operating system comprising Windows® (registered
trademark of Microsoft Corporation), Unix® (registered
trademark of the Open Group in the United States and other
countries), Mac OS® (registered trademark of Apple Com-
puter, Inc.), Linux® (registered trademark of Linus Tor-
valds), as well as others not explicitly listed here.

In various embodiments, the present invention may be
implemented as a method, system, or article of manufacture
using standard programming or engineering techniques, or
both, to produce software, firmware, hardware, or any com-
bination thereof. The term “article of manufacture” (or alter-
natively, “computer program product™) as used in this appli-
cation is intended to encompass a computer program
accessible from any computer readable device, carrier or
media. In addition, the software in which various embodi-
ments are implemented may be accessible through the trans-

US 9,305,132 Bl

5

mission medium, for example, from a server over the net-
work. The article of manufacture in which the code is
implemented also encompasses transmission media, such as
the network transmission line and wireless transmission
media. Thus the article of manufacture also includes the
medium in which the code is embedded. Those skilled in the
art will recognize that many modifications may be made to
this configuration without departing from the scope of the
present invention.

The computer system illustrated in FIG. 2 is not intended to
limit the present invention. Other alternative hardware envi-
ronments may be used without departing from the scope of
the present invention.

An approach of the invention is the replacement of com-
putations with communication (memory access) since
graphical processing units (GPUs) have better handling of
arithmetic complexity than those based on random access.

For example, the nVidia 7900 series GPU, at its peak, can
handle 24*2*(4-vector)=48%*(4-vector) computations in one
clock cycle. This is equivalent to 24 billion (or 24G) 4-com-
ponent-operations (i.e., 96 Gflops). At the same time, the
same GPU can access to the memory with a peak performance
of’35 gigabytes per second access speed. Unfortunately, in the
case of random texture accesses this number reduces to 4
gigabytes per second. In other words, in the random access
case, one can perform (4 gigabytes/4 components/4 bytes per
component=256 million 4-component-accesses. In other
words, one can replace one random 4-component texel access
with 196 4-vector computations. In this patent, we exploit this
case.

Conversion of 2D Lookup Tables into Computations

In an implementation of the invention, there are three steps
of converting a two-dimensional (2D) matrix memory lookup
into computations in GPUs.

FIG. 3 shows a flow of the steps of converting a two-
dimensional matrix memory lookup into computations in
GPUs.

Step 1: Decomposition of 2D LUT into 1D Orthogonal
Tables

Assume a 2D lookup table, h, which contains one complex
number per entry. In the case of a GPU, it is two complex
numbers, i.e., four entries. Any arbitrary 2D matrix can be
decomposed into a sum of outer products of two one-dimen-
sional (1D) orthogonal functions. This can be mathematically
represented as h(nl, n2)=Sum(hk1 (n1)*hk2(n2).

In general, a given 2D lookup table can be partitioned by
using a singular value decomposition (SVD) technique.

The 2D lookup table that represents the sum, h, can be
represented with 10~ accuracy by using eight 1D tables. In
other words, by performing sixteen table accesses (eight
access per dimension) we can generate the same table, h.
However, the penalty is, this approach requires sixteen times
more accesses to the memory.

Further simplification can be performed in the case the 1D
functions are symmetric or skew symmetric. These properties
allow us to reduce the amount of data to be stored by half.
Nevertheless, this operation does not reduce the lookup
count.

Step 2: Representation of 1D Functions (H1k and H2k) as
Polynomials

Each lookup operation can replaced with direct computa-
tion by representing each 1D function using a polynomial
representation. In one embodiment, the 1D bases can be rep-
resented by 20-25” order polynomials. This way we can
replace each lookup table with a twentieth degree polynomial

10

15

20

25

30

35

40

45

50

55

60

65

6

computation. In this case, the twentieth degree polynomial
with constant coefficients can be programmed into the frag-
ment program a priori.

However, in this case, each 2D lookup has been replaced
with 16 (8 per 1D function)*20=320 computations (multiply-
add operation). Although there is no lookup in this case, it still
requires considerable amount of computation.

When the hk1 and hk2 functions are either identical or the
conjugate (reverse) of each other, we can further reduce com-
putations by half. Therefore, the total required computations
is 8%20=160.

Step 3: Computational Efficiency Through Mixing Poly-
nomial Representation and Control Structures

The computational cost can be reduced dividing domain of
the hk1 or hk2 functions into subdomains such that in each
domain, as shown below, the portion ofthe 1D function can be
represented with lower degree polynomial. For example, by
dividing the domain into 10 subregions, each 1D function can
be represented with a third order (i.e., quadratic) polynomial.

By dividing the index space, nl or n2, into equal intervals,
we can approximate the hnk1 with a lower order polynomial.
We can determine the interval in which the given nl or n2
values lie by dividing the index by the interval length and by
using a switching operation as outlined below. In this case, by
using a say third-degree polynomial approximation, we
reduce the calculation cost to four multiplications and a
switching operation. The following is sample pseudocode:

IntervalLength=totallntervalLength/10; // as an example

interval=n1/Intervall.ength;

switch (interval)

case 1:

hnk1=((c3*x+c2)*x+c1)*x+c0;

break;

case 2:

hnk1=((c7*x+c6)*x+c5)*x+c4;

break;

}

In other words, the total cost can be reduced to 8*(4+1)=40
computations. Therefore, this computation is about five times
faster than a computation employing memory lookup opera-
tions.

This description of the invention has been presented for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise form
described, and many modifications and variations are pos-
sible in light of the teaching above. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical applications. This description
will enable others skilled in the art to best utilize and practice
the invention in various embodiments and with various modi-
fications as are suited to a particular use. The scope of the
invention is defined by the following claims.

The invention claimed is:

1. A system comprising:

a computing system comprising at least one central pro-
cessing unit and at least one graphics processing unit;

a user interface for interacting with the computer system;

a computer readable medium comprising data describing
size and placement of features to be formed on a photo-
lithography exposure mask used to manufacture semi-
conductor devices; and

a computer readable medium comprising optical proximity
correction calculation procedures for acting upon the
data, wherein at least a portion of the optical proximity
correction calculation procedures are executed using the

US 9,305,132 Bl

7

graphics processing unit, and the optical proximity cor-
rection calculation procedures comprise:

causing processing of a set of polynomials in parallel using
the graphics processing unit.

2. The system of claim 1 further comprising:

output devices for displaying the results of applying the
optical proximity correction calculation procedures
executed using the graphics processing unit upon the
data,

wherein X andY coordinates for two opposite corners of a
two-dimensional trapezoidal shape of the data is repre-
sented in a RGBA (RED-GREEN-BLUE-ALPHA)
color space format in the graphics processing unit.

3. A method comprising:

providing a target mask, wherein the target mask is non-
pixelated, quantized tone, and in a spatial domain;

performing a frequency domain transformation on the tar-
get mask to obtain a first mask, wherein the first mask is
nonpixelated, continuous tone, and in a frequency
domain; and

10

15

8

using an electronic processor, computing a first cost func-
tion for a first mask to obtain a first value.

4. The method of claim 3 comprising:

altering the first mask in a frequency domain to obtain a
second mask, wherein the second mask is nonpixelated,
continuous tone, and in the frequency domain, wherein
the altering comprises:

converting a matrix into a set of polynomials; and

processing the set of polynomials using parallel computa-
tional hardware.

5. The method of claim 3 comprising:

computing the first cost function for the second mask to
obtain a second value; and

repeating the altering the first mask and the computing the
first cost function for the second mask until the second
value is less than the first value.

#* #* #* #* #*

